| Einheiten < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     |  | Status: | (Frage) beantwortet   |   | Datum: | 08:43 Mo 04.02.2008 |   | Autor: | TTaylor | 
 
 | Aufgabe |  | Zeige: Die Einheitengruppe [mm]U(\IZ[i]/(1+7i))  [/mm] besitzt genau 20 Elemente. | 
 [mm]E(R)={ a\in R [/mm] : Es gibt ein [mm] b\in R [/mm]  mit  [mm]ab=ba=1} [/mm] bezeichnet die Menge der Einheiten. Und wie finde ich raus, dass die oben genannte Einheitengruppe 20 Elemente hat?
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Antwort) fertig   |   | Datum: | 09:00 Mo 04.02.2008 |   | Autor: | felixf | 
 Hallo
 
 >  Zeige: Die Einheitengruppe [mm]U(\IZ[i]/(1+7i)) [/mm] besitzt genau 20
 > Elemente.
 
 Das machst du am Besten mit deiner anderen Aufgabe: in [mm] $\IZ/50\IZ$ [/mm] geht das Einheitenbestimmen viel einfacher, und das Zaehlen erst rest (wenn man $50$ faktorisiert und damit die Eulersche [mm] $\varphi$-Funktion [/mm] an der Stelle 50 auswertet).
 
 LG Felix
 
 
 
 |  |  | 
 
 
 |