www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - vollständige induktion
vollständige induktion < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige induktion: aufgabe 1.7
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 30.10.2006
Autor: wulfstone

Aufgabe
Zeigen Sie durch vollständige Induktion über [mm] \IN [/mm] die folgenden Gleichung

$ [mm] \summe_{i=0}^{n} \bruch{1}{2^{i}} [/mm] = [mm] \bruch{ \bruch{1}{2^{n+1}} -1} {\bruch{1}{2} -1} [/mm] $


induktionsanfang habe ich schon fertig:
Induktionsschluss:
sei n [mm] \in \IN [/mm] und es gelte: $ [mm] \summe_{i=0}^{n} \bruch{1}{2^{i}} [/mm] = [mm] \bruch{ \bruch{1}{2^{n+1}} -1} {\bruch{1}{2} -1} [/mm] $

z.Z.: $ [mm] \summe_{i=0}^{n+1} \bruch{1}{2^{i}} [/mm] = [mm] \bruch{ \bruch{1}{2^{n+2}} -1} {\bruch{1}{2} -1} [/mm] $

P(n) ist das Prädikat
$ P(n+1) [mm] \gdw \bruch{1}{2^{n+1}} [/mm] + [mm] \summe_{i=0}^{n} \bruch{1}{2^{i}} [/mm] $

=> $ [mm] \bruch{1}{2^{n+1}} [/mm] + [mm] \bruch{ \bruch{1}{2^{n+1}} -1} {\bruch{1}{2} -1} [/mm] $

und jetzt das auflösen
fällt mir total schwer!
ich komme einfach nicht auf das was ich zeigen soll!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.






        
Bezug
vollständige induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mo 30.10.2006
Autor: Vertex

Hallo wulfstone,

versuche es mal indem du bei

[mm] \bruch{1}{2^{n+1}} [/mm] + [mm] \bruch{ \bruch{1}{2^{n+1}} -1} {\bruch{1}{2} -1} [/mm]

beide Terme auf den gleichen Nenner bringst.
D.h. den linken Term um

[mm] \bruch{\bruch{1}{2}-1}{\bruch{1}{2}-1} [/mm] erweitern.

Dann den Zähler des so neu enstandenen Terms ausmultiplizieren und dann hast du die Lösung schon fast dastehen.

Gruss,
Vertex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]